
1 Introduction

Many literary critics have claimed algorithms drive conceptual writing. In a summer
2012 essay, Johanna Drucker defined conceptual writing as “an intellectual product
[. . .] indicative of our thought-forms” with “the aesthetic sensibility of rule-based
work” that “finds expression in the computational games that parallel algorithmic
processing.” Several reviewers of Goldsmith’s Uncreative Writing have discussed
his theories as reducing all of literature to algorithms, even though the word “algo-
rithm” appears nowhere in the book. However, it does appear in an April 2010 post
to Harriet where Goldsmith describes a new writing emerging, “one of algorithmic
rationality and machine worship.”

This led Kristen to approach a computer scientist about the question of algo-
rithms. Do conceptual pieces really seem to “parallel algorithmic processing”? We
decided rather than accepting algorithms as a metaphor, we would take it literally,
and try to describe some conceptual works using the rhetoric of computer science.
This post summarizes a number of discussions examining the similarity between the
processes in conceptual writing and algorithms in computer science.

2 Definitions

In computer science, an algorithm refers to a set of instructions for performing some
task. There are algorithms for sorting numbers, morphologically analyzing words,
and processing images. Algorithms can also be composed. For example, an algo-
rithm for searching the web will include steps which involve morphological analysis
(when representing documents and queries) and sorting numbers (when ranking doc-
uments). Much of computer science as an academic discipline focuses on developing
new algorithms, either to improve the solution to an existing task or because the
task is altogether new.

An algorithm is primarily evaluated by its ability to perform the task. A sorting
algorithm that orders items correctly is better than another algorithm that includes
errors; a translation algorithm that accurately translates a document is superior to
one which makes errors. Sometimes the metrics are straightforward as in sorting;
other times they are more nuanced as in document translation. In addition, al-
gorithms are often evaluated by auxiliary metrics such as speed or memory usage.
There are many metrics and rarely do algorithms dominate each other across all
metrics.

Throughout our analysis, we will use notation found in introductory computer
science texts. We refer to the individual executing the algorithm as the operator of
algorithm. Algorithmic descriptions will use basic flow control concepts such as itera-
tion (e.g. for loops) and conditional execution (e.g. if statements). An algorithm will
also include references to supporting functions which should be interpreted as pass-
ing control to another algorithm. When a function name is prefixed by Operator,
control is passed to the human operator(s) to perform the subtask. All other sub-
tasks have well-known implementations. Corpora, be they input, output, or auxiliary
texts, are represented as sequences of sentences (i.e. C = {s1, s2, . . . , sn−1, sn}). Cor-
pora may be iterated over (e.g. “for s ∈ C . . .”) or concatenated (e.g. “C ◦ {s}”).
Our descriptions include comments, indicated by the symbol “!”.

3 Algorithms in Conceptual Writing

In order to support the perspective of conceptual writing as algorithmic, we will
describe several examples of conceptual writing using algorithmic notation. All of
the works in this section demonstrate algorithmic processes which transform an input
corpus by a series of instructions into an output text.

Although these descriptions focus on the mechanical aspects of the works, all
algorithms require some operator direction (beyond designing the algorithm itself).
Operator intervention comes in two flavors. First, algorithms sometimes require an
operator to perform some subtask. As a result, these subtasks are subject to the par-
ticular operator’s behavior, by explicitly or implicitly massaging the output. Adding
in natural operator error, the resulting realizations of a conceptual work may be dif-
ferent from operator to operator. Second, algorithms cannot be realized without the
operator defining the input parameters and corpus. Despite our presentation of algo-
rithms as agnostic to input, an operator’s choice of parameters—be it characterized
as explicit decisions or environmental influences—is fundamental to the realization
and—arguably—fundamental to understanding the realization.

3.1 The Weather

In The Weather, Goldsmith transcribed weather reports broadcast on 1010 WINS,
a New York area news station. The Weather exhibits no apparent transformation of
the input text beyond segmentation into chapters; the operator merely copies input
data to an output device. Goldsmith introduces the work as part of a theme of
“transcription, retyping, copying; moving information from one place to another as
a valid writing practice”.

Algorithmically, we can represent The Weather as a sequence of transcription
actions performed by the operator observing the input.

GoldsmithProcess0(C)
1 C ′ ← {} ! initialize the output
2 for s ∈ C ! iterate over sentences in C
3 do
4 s′ ← OperatorTranscribe(s) ! pass control to operator
5 C ′ ← C ′ ◦ {s′} ! concatenate output
6 return C ′ ! return the output

All variables exogenous to the algorithm are contained in theOperatorTranscribe
procedure. The algorithm underlying The Weather makes no assumption about the
input text or the execution of OperatorTranscribe; those are under the juris-
diction of the operator.

The specific realization of GoldsmithProcess0 in The Weather depends not
only by the curatorial choice of using 1010 WINS weather reports as C but also the
execution of OperatorTranscribe. Because this function is subject to operator
inconsistency, a new realization of GoldsmithProcess0, even if it included the
same input, would undoubtedly be different from the published version. With this
caveat, we can present this specific realization of GoldsmithProcess0 as

GoldsmithProcess0(W)

where W represents the input corpus of weather reports.

3.2 Apostrophe Engine

Darren Wershler and Bill Kennedy’s Apostrophe Engine—subsequently published by
ECW Press as Apostrophe: The Book—is a website that allows the reader to click
on any line of the existing poem, spawning processes that would take the line as
a search query, filter the resulting pages for phrases beginning “You are” (hence,
apostrophe), code-strip them, and present them as a new and enduring section of
the poem, with each line hyperlinked so that the process could be repeated. Insofar
as the readers influence the realization of the algorithm, we consider them operators
of the algorithm.

Algorithmically, Apostrophe Engine takes as input a seed poem, an auxiliary
corpus, and a pattern to search for in the results. The core algorithm responds to a
stream of operator input (i.e. clicks on sentences).

WershlerKennedyProcess0(C,D, p)

1 C ′ ← C ! initialize the output
2 while true ! infinite loop
3 do
4 q ← OperatorInput(C ′) ! pass control to operator
5 D′ ← DocumentRetrieval(D, q)! run query
6 S ← SubstringMatch(D′, p) ! sentences matching p
7 C ′ ← C ′ ◦ S ! concatenate output

As with GoldsmithProcess0, this algorithm is agnostic to operator decisions,
be they in corpus selection or sentence selection (line 4). In fact, any two re-
alizations of WershlerKennedyProcess0 will almost certainly not be equiva-
lent. Primarily, this results from the OperatorInput subtask which, more so than
GoldsmithProcess0, exhibits nondeterminism because the reader selects one of
the |C ′| sentences at each iteration. Accordingly, realizations of the work diverge
very quickly with the number of iterations. Even if two realizations are equivalent
at some point in time, they will almost certainly diverge because of the infinite loop
(line 2). We present the distribution over similarities of two independent realizations
of WershlerKennedyProcess0 in the following figure,

0 5 10 15 20 25 30

0.00

0.05

0.10

0.15

0.20

0.25

number of common sentences

p
ro
b
ab
il
it
y

10 clicks

250 clicks

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

0.25

fraction of common sentences

p
ro
b
ab
il
it
y

10 clicks

250 clicks

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

number of clicks

ex
p
ec

te
d
 f

ra
ct

io
n
 o

f
co

m
m

o
n
 s

en
te

n
ce

s

This model assumes that the users in line 2 choose randomly amongst the existing
links on the page. Because content is more similar at the beginning of the real-
ization (10 clicks), there is still some overlap. As the number of clicks from users
increases, this overlap decays significantly. This divergence will accelerate if we make
more realistic assumptions about distinct reader populations and dynamic auxiliary
corpora.

The specific realization of WershlerKennedyProcess0 in Apostrophe Engine
can be represented,

WershlerKennedyProcess0(A,W, “you are”)

where A is the original apostrophe poem and W is the web. Because the web is
dynamic, the output will reflect of the state of the web during the period of real-
ization. Variability across realizations also results from the incorporation of reader
input, emphasizing the operator effect discussed in The Weather.

3.3 Issue 1

The briefly-infamous Issue 1, edited by Stephen McLaughlin and Jim Carpenter,
was a pseudo-anthology that randomly assigned poets’ names to texts generated by
Carpenter’s “Erica T. Carter”, an implementation of a language modeling algorithm
commonly used in disciplines such as speech recognition, machine translation, and
information retrieval. These models of sequence data encode statistical regularities
in cooccurrence patterns. One important side-effect of language modeling is the
ability to generate novel sentences consistent with the observed data. For Issue 1,
the authors use texts from Emily Dickinson and Joseph Conrad to train the model
and generated text statistically similar to these input corpora.

The algorithm underlying Issue 1 works by first learning the free parameters of
the language model, θ. The algorithm then samples n sentences from the model and
concatenates them to the output.

McLaughlinCarpenterProcess0(C, n)
1 C ′ ← {} ! initialize the output
2 θ ← LanguageModel(C) ! train language model
3 for i ∈ {1, . . . , n} ! sample n times
4 do
5 s ∼ θ ! sample from language model
6 C ′ ← C ′ ◦ {s} ! concatenate output
7 return C ′ ! return the output

Human intervention is completely removed from the process save in choosing the
parameters of the algorithm.

The realization of McLaughlinCarpenterProcess0 in Issue 1 can be ex-
pressed as,

McLaughlinCarpenterProcess0({D,C}, n)

whereD and C are the corpus of Dickinson and Conrad samples. Unlike our previous
two analyses, this particular expression is not subject to exogenous variables, save
perhaps for the random number generator of the machine.

3.4 Fidget

Goldsmith’s Fidget is a detailed chronicle of every bodily movement transpiring
during a single day. The writing process consisted first of Goldsmith wearing a
microphone and describing events as they transpire; then this audio was transcribed.

Algorithmically, the first step consists of iterating over a set of events, E , and
describing them in some way, in this case orally. We present this step below,

GoldsmithProcess1(E)
1 C ′ ← {} ! initialize the output
2 for e ∈ E ! iterate over events in E
3 do
4 s ← OperatorDescribe(e) ! pass control to operator
5 C ′ ← C ′ ◦ {s} ! concatenate output
6 return C ′ ! return the output

GoldsmithProcess1 is structurally equivalent to GoldsmithProcess0 and both
can be see as translation processes. GoldsmithProcess0 translates from one lin-
guistic corpus to another; GoldsmithProcess1 translates from a physical event
corpus to a linguistic corpus. The second step, the transcription of the audio, is an
instance of GoldsmithProcess0. For that reason, the finished algorithmic descrip-
tion can be expressed as,

GoldsmithProcess0(GoldsmithProcess1(E))

which should be read as “use the output from a realization of GoldsmithProcess1
as the input to GoldsmithProcess0”.

The realization of this algorithm in Fidget can be expressed as,

GoldsmithProcess0(GoldsmithProcess1(OperatorFidget()))

whereOperatorFidget represents the operator’s movement through physical space.
The GoldsmithProcess1 process is subject to variability for the same reasons as
GoldsmithProcess0. Moreover, the physiological and physical environment in
which OperatorFidget occurs also introduce variability in output.

3.5 Pad

Zultanski’s Pad catalogs the author’s success or failure in lifting of each of the items
in his apartment with his penis.

Pad can be seen as a version of GoldsmithProcess1. Whereas Fidget uses
relatively everyday processes to generate E , the algorithm in Pad constructs E by
mechanically iterating over a set of items and executing a task. We parameterize the
underlying algorithm according to the set of items, I, and the task to be performed,
f ,

ZultanskiProcess0(f, I)
1 E ← {} ! initialize the output
2 for i ∈ I ! iterate over items in I
3 do
4 e ← OperatorPerform(f, i) ! perform the task f on item i
5 E ← E ◦ {e} ! concatenate output
6 return E ! return the output

Zultanski implements OperatorDescribe as a constrained procedure (i.e. ‘My
dick {can,cannot} lift [object]’).

The realization of the text of Pad can be expressed as,

GoldsmithProcess1(ZultanskiProcess0(OperatorLift,O))

where OperatorLift represents the task to be performed and O is the set of
objects in the apartment. Like OperatorFidget, the physiological environment
affects OperatorLift. On the other hand, the operator’s physical environment
defines O. The output reflects the moment of realization.

3.6 Ad Pedem Litterae

In Ad Pedem Litterae, Giffin describes his own retyping of Goldsmith’s Fidget, with
the implication that potential subsequent iterations of Ad Pedem Litterae apply the
same function to the output of the previous iteration. So each subsequent iteration
would be a description of the retyping of the description of the retyping of the
description of the retyping. . . of Fidget (the original Fidget being iteration 0). In
this case, the algorithm is composed completely of the algorithms studied so far,

GiffinProcess0(C, n)
1 C ′ ← C ! initialize the output
2 for i ∈ {1, . . . , n} ! process n times
3 do
4 E ← ZultanskiProcess0(GoldsmithProcess0, C ′)

! perform process
5 C ′ ← GoldsmithProcess1(E) ! describe process
6 return C ′ ! return the output

where n is the iteration number being generated.
The realization of Ad Pedem Litterae iteration n can be expressed as,

GiffinProcess0(F, n)

where F is Goldsmith’s realization of Fidget. Although GiffinProcess0 inherits
the variability in the supporting algorithms, Giffin realized Ad Pedem Litterae by
using a computer program to automatically replace letters with descriptions of typing
those letters. Giffin had to stop the process after the first iteration because of
computational constraints. We can see why this happens by noticing that the output
size is exponential in the number of iterations, n. We present a plot of the output
size as a function of iteration number below,

O(|C′|)

0 1 2
n

Figure 1: Output growth of Ad Pedem Litterae.

Despite being expressible algorithmically, later iterations of Ad Pedem Litterae
are computationally intractable to realize.

4 Conclusion

We took a very literal interpretation of ‘conceptual writing as an algorithmic pro-
cess’ and reframed several conceptual works as computer algorithms. Attempting
to reverse-engineer conceptual works back to algorithmic roots reveals that some
conceptual works share certain compositional strategies. This approach marginalizes
out the context in which the realization occurs, both in terms of the operator and
the operator’s environment, focusing on the mechanistic act in these works.

We do not make a claim that the strategies described here are exhaustive. Many
other algorithms from the computer science community have been used in conceptual
writing and will be used in future conceptual writing.

5 Exercise

Use the approach from Section 3 to write the algorithm for the following piece,

http://inhumanscale.bandcamp.com/track/hs003-sibling-10

http://inhumanscale.bandcamp.com/track/hs003-sibling-10

	Introduction
	Definitions
	Algorithms in Conceptual Writing
	The Weather
	Apostrophe Engine
	Issue 1
	Fidget
	Pad
	Ad Pedem Litterae

	Conclusion
	Exercise

